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İSTATİSTİK
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Abstract: Unimodality of the distribution of Generalized Order Statistics (GOSs) has a substantial role
in many parameter and confidence interval problems of statistics, actuarial science and economics. Under
some restrictions on model parameters and distributions a number of authors have shown unimodality of
distribution of GOSs. In this article, we present some new results on unimodality of distribution of GOSs
that extend and generalize recently obtained results. A counter example showing that the conditions of the
main Theorem are minimal is also provided.
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1. Introduction
A distribution function F (x) is said to be unimodal if there exists x= a such that F (x) is convex

for x < a and concave for x > a (see, An [4]), Dharmadhikari and Joag-Dev [10]. Unimodality
of the distribution of GOSs has an important role in many parameter and confidence interval
problems of statistics and actuarial science. Financial and actuarial stochastic actions such as life
insurance and stock sales can be represented as functions of GOSs like first or last order statistics.
We also refer the reader for some applications and the unimodality conditions for ordinary order
statistics to Alam [1], Huang et al. [11]. It has been shown that the convexity of 1/f is sufficient to
ensure unimodality of order statistics, where f is a density function, Basak and Basak [5] claimed
the same for the same record values. However, Aliev [2] provided a counterexample showing that
convexity of 1/f(x) is not sufficient for record values to be unimodal. Cramer et al. [9] and Cramer
[8] considered special cases of GOSs investigated their unimodality conditions. Huang and Ghosh
[11] and Chen [6] investigated strong unimodality conditions for GOSs. Recently, some previously
known results for order statistics and record values to the case of GOSs have been generalized by
Alimohammadi and Alamatsaz [3]. Nonetheless, the authors have covered not all possible cases
and some cases remained open. In this study we provide a more general result that fills the gap in
Alimohammadi and Alamatsaz [3]. A counterexample showing that our conditions are minimal is
also provided.

2. Generalized order statistics
The idea of generalized order statistics (GOSs) was introduced in Kamps [12] as a unification
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of several models of random variables arranged in ascending order of magnitude with different
interpretations and statistical applications. Assuming F to be an absolutely continuous distribution
function with density f , and define F̄ = 1− F . The random variables X (r,n, m̃, k) , r = 1,2, ..., n
are called the GOSs based on F if their joint density function is given by

fX(1,n,m̃,k), ...,X(n,n,m̃,k) (x1, x2, ..., xn) = k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[F̄ (xi)]
mif(xi)

)
×[F̄ (xn)]k−1f(xn),

for all F−1(0)<x1 ≤ x2 ≤ ...≤ xn <F−1(1−), where n ∈N, k > 0 and m1, ...,mn−1 ∈R are such
that γr = k+n− r+

∑n−1
j=r mj > 0 for all r ∈ {1, ..., n− 1}, and m̃= (m1, ...,mn−1), if n≥ 2 (m̃∈R

is arbitrary if n= 1).
The sequence X (r,n, m̃, k), 1≤ r ≤ n of g.o.s.’s based on a continuous d.f. F forms a Markov

chain. It is known that many ordered variables are special cases of generalized order statistics. By
choosing the parameters appropriately, known results for models such as order statistics (m1 =
...=mn−1 = 0, k= 1), record values (m1 = ...=mn−1 =−1, k= 1), k−th record values (m1 = ...=
mn−1 =−1, k ∈N), progressive type II censored order statistics (mi ∈N, k ∈N), sequential order
statistics (γi = (n− i+ 1)αi; α1, α2, . . . , αn > 0), Pfeifer’s record values (γi = βi, β1, β2, . . . , βn > 0)
can be obtained as special cases of g.o.s. .

Marginal density functions of GOSs have a form

fX(r,n,m̃,k)(x) = cr−1[F̄ (x)]γr−1gr(F (x))f(x), x∈R, (2.1)

where cr−1 =
∏r

i=1 γi, r= 1, ..., n with γn = k and g1(u)≡ 1, gr(u) =
∫ u
0
gr−1(t)[1− t]mr−1dt, r > 1

(see, Cramer and Kamps [7] , Kamps and Cramer [13] , Alimohammadi and Alamatsaz [3].
The next Theorem is the most recent Theorem covering the unimodality of distribution of GOS’s.

Theorem 1 (see, Alimohammadi and Alamatsaz [3]). Let F be an absolutely continuous
distribution function with density f. Then, its GOS is unimodal if
(i) For r= 1 and mi ∈R, i= 1, ..., n− 1 :
(a) 0<γ1 < 1 and f is non-decreasing on its support,
(b) γ1 = 1 and f is unimodal,
(c) 1<γ1 and either 1/f is convex or f is non-increasing on its support,
and
(ii) For r≥ 2 :
(a) 0<γr < 1, mi ∈R, i= 1, ..., n− 1, and f is non-decreasing on its support,
(b) 1≤ γr, m=m1 = ...=mn−1 =−1,1/f is convex and f is non-decreasing on its support,
(c) 1≤ γr, 0≤mi, i= 1, ..., n− 1, and 1/f is convex.
For the case of negative mi, i = 1, ..., n− 1 the authors provide an example showing that for dif-
ferent negative values of mi the GOS may not be unimodal even if 1/f is convex. We take into
consideration that the case when r≥ 2, γr ≥ 1 and mi are negative and equal.

3. Main results

Theorem 2. Let F be an absolutely continuous distribution function with density f , m=m1 =
... = mn−1 < 0 (m 6= −1), r ≥ 2 and γr ≥ 1. Then, the distribution of GOS is unimodal if f is
non-decreasing on its support and 1/f is convex.
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Remark 1. Note that the case m=m1 = ...=mn−1 =−1 is included in Theorem 1 and have
not been considered here.
Proof. We will show that f ′X(r,n,m̃,k)(x) changes sign at most once and, if so, only from positive

sign to negative sign, which is the sufficient condition GOS to be unimodal. From (2.1) we have

f ′X(r,n,m̃,k)(x) = cr−1f
2(x)[F̄ (x)]γr−1gr(F (x)) (3.1)

×
[
−γr− 1

F̄ (x)
+
g′r(F (x))

gr(F (x))
+
f ′(x)

f2(x)

]
.

As the expression outside parentheses is positive, sign of the derivative is the same as the sign of
the expression in the parentheses. Let’s denote

Z(u) =
g′r(u)

gr(u)
− γr− 1

1−u
, 0<u< 1.

Taking into account gk+1(u) = 1
k!(m+1)k

(1− (1−u)m+1)k and g′k(u) = gk−1(u)(1−u)m we get

Z(u) =
(r− 1)(m+ 1)(1−u)m

1− (1−u)m+1
− γr− 1

1−u
,

Z ′(u) =
[−(r− 1)(m+ 1)− (γr− 1)](1−u)2(m+1)

(1− (1−u)m+1)2(1−u)2
(3.2)

+
[2(γr− 1)− (r− 1)(m2 +m)](1−u)m+1− (γr− 1)

(1− (1−u)m+1)2(1−u)2
.

Consider the denominator of Z ′(u)

Z1(u) = [−(r− 1)(m+ 1)− (γr− 1)](1−u)2(m+1)

+[2(γr− 1)− (r− 1)(m2 +m)](1−u)m+1− (γr− 1)
≡ A(1−u)2(m+1) +B(1−u)m+1 +C
≡ At2 +Bt+C (3.3)

which is a quadratic expression of t= (1−u)m+1 and

Z1(0) =A+B+C =−(r− 1)(m+ 1)2 < 0. (3.4)

Discriminant of Z1(u) as function of t is

D = B2− 4AC
= [2(γr− 1)− (r− 1)(m2 +m)]2 + 4[(1− r)(m+ 1)− (γr− 1)](γr− 1)
= (r− 1)(m+ 1)2[(r− 1)m2− 4(γr− 1)]

Rewrite

Z(u) =
[(r− 1)(m+ 1) + (γr− 1)](1−u)m+1− (γr− 1)

(1− (1−u)m+1)(1−u)

≡ −A(1−u)m+1 +C

(1− (1−u)m+1)(1−u)
. (3.5)

From the conditions of Theorem we conclude that the coefficient C ≡−(γr−1)≤ 0. Case A≥ 0: It
means m+1≤−(γr−1)/(r−1)≤ 0, therefore (1−u)m+1 > 1 or 1−(1−u)m+1 < 0. In this case both
nominator and denominator of the right hand side of (3.4) are non-positive and Z(u)≥ 0. Because
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f is non-decreasing that we will be getting f ′/f2 ≥ 0. Hereby, right side of (3.1) is non-negative
that implies the fX(r,n,m̃,k)(x) is non-decreasing and, is unimodal. Case A < 0: In this case let’s
check two subcases when the discriminant of Z1(u) as function of t is negative and non-negative.
Therefore, when discriminant is negative, Z1(u) as having a negative determinant, does not change
the signs and Z1(0) < 0 we conclude that Z1(u) < 0 for all u and by (3.3) we get the Z ′(u) < 0.
Therefore, Z(u) is decreasing function. Additionally, convexity of 1/f implies that it’s derivative
−f ′/f2 is non-decreasing, we conclude that Z(F (x)) + f ′/f2 is non-increasing, can change sign
only once and, if so, only from positive to negative. It follows from (3.1) that f ′X(r,n,m̃,k)(x) itself
also changes the sign at most once as x moves from −∞ to ∞ which is equivalent to unimodality
of fX(r,n,m̃,k)(x).When discriminant is non-negative, intervals where Z(u) increases and decreases
depend on the sign of Z ′(u) which also depends on the sign of Z1(u). From (3.4) we conclude
that Z(u) is non-increasing around 0. Assuming that u1, u2 are two roots of Z1(u) = 0. Then we
can calculate values of Z(u1). By (3.3) we know that the product of roots of quadratic equation
(1−u1)

m+1(1−u2)
m+1 =C/A. By taking this into account on (3.5) we get

Z(u1) =
−A(1−u1)

m+1 +C

(1− (1−u1)m+1)(1−u1)

=
C
(
−(1−u1)

m+1 1
C/A

+ 1
)

(1− (1−u1)m+1)(1−u1)

=
C
(
−(1−u1)

m+1 1
(1−u1)m+1(1−u2)m+1 + 1

)
(1− (1−u1)m+1)(1−u1)

=
C (−1/(1−u2)

m+1 + 1)

(1− (1−u1)m+1)(1−u1)
.

Because C < 0, and roots u1 ∈ (0,1) and u2 ∈ (0,1) one can see no matter what is he sign of m+ 1,
(1−u1)

m+1 and (1−u2)
m+1 both are greater than 1 or both are less than 1. In both cases the right

hand side of the last equality is positive as C is negative or equally Z(u1)> 0. By the symmetry
Z(u2)> 0. It means that Z(u) does not reach 0 on the interval (0,max(u1, u2)) and then always
decreases on (max(u1, u2),1). By this way Z(u) can change sign only on the interval (max(u1, u2),1)
and only from positive to negative (for the illustration see Figure 1).

Figure 1. Illustration of Z(u)
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As noted above f ′/f2 is non-increasing and non-negative. So Z(F (x)) + f ′/f2 is non-negative
on (0,max(u1, u2)) as the sum of two non-negative functions and only after decreasing on
(max(u1, u2),1) as the sum of two decreasing and non-increasing functions. As in the case above
from (3.1) we conclude that f ′X(r,n,m̃,k)(x) changes the sign at most once as x moves from −∞ to
∞ which is equivalent to unimodality of fX(r,n,m̃,k)(x).

References
[1] Alam, K. (1972). Unimodality of the distribution of an order statistic. The Annals of Mathematical

Statistics, 43, 2041–2044.

[2] Aliev, F.A. (2003). A comment on ‘Unimodality of the distribution of record statistics’. Statistics and
Probability Letters, 64, 39–40.

[3] Alimohammadi, M. and Alamatsaz, M. H. (2011). Some new results on unimodality of generalized order
statistics and their spacings. Statistics and Probability Letters, 81(11), 1677-1682.

[4] An, M.Y. (1998). Logconcavity versus logconvexity: a complete characterization. Journal of Economic
Theory, 80, 350–369

[5] Basak, P. and Basak, I. (2002). Unimodality of the distribution of record statistics. Statistics and Prob-
ability Letters, 56, 395–398.

[6] Chen, H., Xie, H. and Hu, T. (2009). Log-concavity of generalized order statistics. Statistics and Proba-
bility Letters, 79, 396–399.

[7] Cramer, E. and Kamps, U. (2003). Marginal distributions of sequential and generalized order statistics.
Metrika, 58, 293–310.

[8] Cramer, E. (2004). Logconcavity and unimodality of progressively censored order statistics. Statistics
and Probability Letters, 68, 83–90.

[9] Cramer, E., Kamps, U. and Rychlik, T. (2004). Unimodality of uniform generalized order statistics, with
applications to mean bounds. Annals of the Institute of Statistical Mathematics, 56, 183–192.

[10] Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications. Academic Press,
Boston.

[11] Huang, J.S. and Ghosh, M. (1982). A note on strong unimodality of order statistics. Journal of the
American Statistical Association, 77, 929–930.

[12] Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical Planning and Infer-
ence, 48, 1–23.

[13] Kamps, U. and Cramer, E. (2001). On distributions of generalized order statistics. Statistics, 35, 269–
280.


	Introduction 
	Generalized order statistics
	Main results

